Chapitre 9: Description d'un fluide au repos

Cours

A. Description qualitative d'un fluide

1. Définition

Un fluide est soit un liquide ou un gaz. Ces deux phases possibles de la matière ont en commun les propriétés suivantes :

- -Elles peuvent s'écouler,
- -Elles n'ont pas de forme propre, les fluides prennent la forme du récipient qui les contient.

2. <u>Description microscopique</u>

Liquide : Les molécules sont proches les unes des autres mais peuvent facilement se déplacer.

Gaz : Les molécules sont éloignées les unes des autres et en mouvement chaotique (synonyme de désordonné).

La figure ci-dessous donne une représentation visuelle des fluides en comparaison avec les solides.

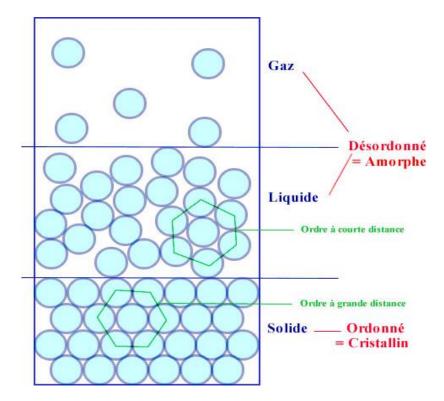


Figure 1

3. <u>Description macroscopique</u>

A notre échelle on peut décrire un fluide par les trois grandeurs suivantes :

- -masse volumique ρ en kilogramme par mètre cube (kg.m⁻³) qui s'obtient par une expérience mesurant la masse et le volume puis en calculant $\rho = m/V$.
- -température θ en degré Celsius (°C) qui se mesure avec un thermomètre. La température T en kelvins (K) est directement proportionnelle à l'énergie cinétique des molécules, de plus T = θ + 273,15.
- -pression p en pascals (Pa) qui se mesure avec un manomètre.

$$1 \text{ Pa} = 1 \text{ N/m}^2$$

Voici l'adresse d'un bon site de simulation sur les gaz :

https://phet.colorado.edu/fr/simulation/gas-properties

B. Description quantitative d'un fluide

1. Force pressante

Les deux photographies de la figure 2 montrent que le liquide exerce une force sur la paroi du récipient qui le contient. En effet, le trou percé permet une sortie du liquide suivant la perpendiculaire à la paroi.

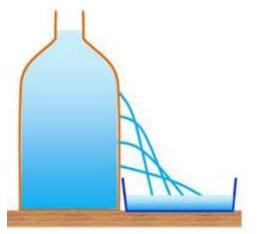


Figure 2

Le même phénomène existe pour les gaz mais il est plus difficile à visualiser.

La force pressante \vec{F} exercée par un fluide (figure 3) sur une surface plane \vec{F} est \vec{F} = - p \vec{F} \vec{F} , où p est la pression du fluide au contact de la surface et \vec{n} un vecteur unitaire perpendiculaire à la surface et dirigé vers le fluide. Sur la figure 4 la surface du ballon n'est pas plane.

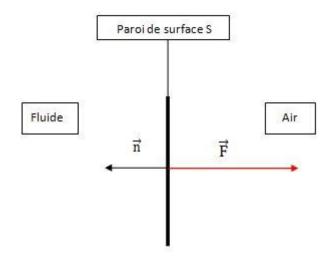


Figure 3

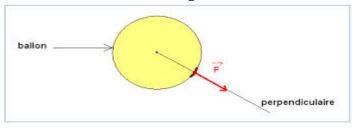


Figure 4

La pression dans le fluide a pour expression

$$p = \frac{F}{S}$$

p: pression en pascals (Pa)

F : valeur de la force pressante en newtons (N)

S: surface en mètres carrés (m²)

Remarques

-La relation ci-dessus constitue une définition de la pression

-On calcule souvent
$$F = p S$$

- 1 Pa = $1 \frac{N}{m^2}$ ou $N.m^{-2}$

Autres unités pour p

- $-1 \text{ bar} = 10^5 \text{ Pa}$
- $-1 \text{ hPa} = 10^2 \text{ Pa}$
- -1 mbar = 10^2 Pa $(10^{-3} \times 10^5 = 10^2)$

Application

Une bouteille cylindrique de diamètre $D=25\,\mathrm{cm}$, contient du gaz propane à la pression $p=2,5\,\mathrm{bar}$. Déterminer la valeur de la force pressante sur le couvercle supérieur.

En utilisant les relations $p = \frac{F}{S}$ et $S = \pi \frac{D^2}{4}$ on obtient :

$$\begin{split} F &= \frac{p \, \pi \, D^2}{4} \\ &= \frac{2,5.10^5 \times \pi \times (25.10^{-2})^2}{4} \\ F &= \underline{1,2.10^4 \, N}. \end{split}$$

2. Loi de Mariotte pour les gaz

A température constante et pour une quantité de matière donnée, le produit de la pression p du gaz par le volume V qu'il occupe est constant :

$$p V = constante.$$

Remarques

- -La constante est souvent notée k et sa valeur s'exprime en Pa.m³.
- -La loi de Mariotte s'utilise pour comparer deux états 1 et 2 : $p_1 V_1 = p_2 V_2$.
- -Très souvent on ne calcule pas k.
- -La loi de Mariotte date de 1676.

Application

Dans une bouteille de plongée, l'air est à la pression $p_1=250$ bar et occupe un volume $V_1=5,00$ L. Quel volume V_2 occupe cet air si la pression est $p_2=5,00$ bar ? Appliquons la loi de Mariotte entre les deux états :

$$p_1\,V_1 = p_2\,V_2$$
 , soit $V_2 = \frac{p_1\,V_1}{p_2}$.

Application numérique

$$V_2 = \frac{250 \times 5,00}{5,00}$$

 $V_2 = 250 \text{ L ou } 0.250 \text{ m}^3.$

3. Statique des fluides

La photographie (Figure 5) nous renseigne sur un fait relativement connu, à savoir que la pression augmente de 1 bar tous les 10 m.

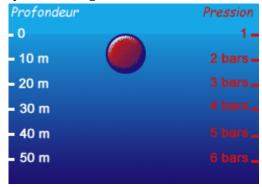


Figure 5

Qu'en est-il pour un liquide homogène quelconque?

Considérons une colonne cylindrique (Figure 6) de liquide de surface de base S et de hauteur h.

Traduisons l'immobilité de la colonne de liquide suivant l'axe horizontal :

Les forces pressantes horizontales se compensent : $\overrightarrow{F_1} + \overrightarrow{F_2} = \overrightarrow{0}$.

Traduisons l'immobilité de la colonne de liquide suivant la verticale :

$$\vec{F}_{inf} + \vec{P} + \vec{F}_{sup} = \vec{0}$$
.

Projetons suivant l'axe vertical orienté vers le haut :

$$F_{inf} - P - F_{sup} = 0 \text{, soit } p_{inf} \, S - \rho \, S \, h \, g - p_{sup} \, S = 0. \label{eq:psup}$$

Divisons par S les deux membres de l'égalité précédente :

$$p_{inf} - p_{sup} = \rho g h$$

 p_{inf} , p_{sup} : pressions en pascals (Pa)

 ρ : masse volumique en kilogramme par mètre cube (kg.m⁻³)

g: intensité de la pesanteur en newton par kilogramme (N.kg⁻¹)

h: hauteur en mètres (m)

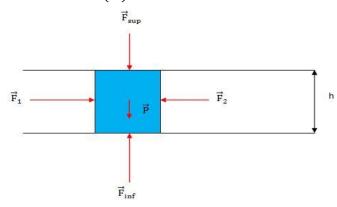


Figure 6

Application

On remplit un long tube avec du mercure Hg (Figure 7). Ensuite le tube est

- -bouché dans sa partie supérieure,
- -retourné vers le bas avec le bouchon sous le niveau du mercure contenu dans un cristallisoir,
- -le bouchon est enlevé.

On constate que le niveau supérieur du mercure (dans le tube) baisse, il s'est donc formé du vide dans le haut du tube.

Déterminer la hauteur h.

<u>Données</u>

$$\begin{split} \rho \; (Hg) &= 13.6 \; kg.L^{-1} \\ g &= 9.8 \; N.kg^{-1} \\ p_{inf} &= 1013 \; mbar \end{split}$$

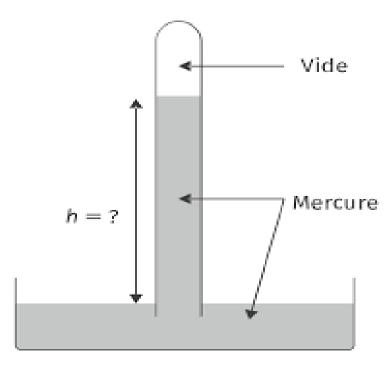


Figure 7

La pression p_{sup} est nulle car dans le vide il n'y à pas de molécules qui entrent en collision avec le mercure. On en déduit $p_{inf}=\rho$ g h donc

$$h = \frac{p_{inf}}{\rho g}$$

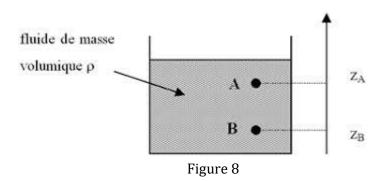
$$=\frac{1013\times10^{-3}\times10^{5}}{13,6.10^{3}\times9,8}$$

h = 0.76 m ou 76 cm.

En généralisant on obtient la loi fondamentale de la statique des fluides incompressibles : Soient A et B deux points dans un liquide (Figure 8), d'altitudes respectives z_A et z_B , où règnent les pressions respectives p_A et p_B . Alors :

$$p_{A-} p_B = \rho g (z_B - z_A)$$

L'axe des altitudes est orienté vers le haut.



p_A, p_B: pressions en pascals (Pa)

 ρ : masse volumique en kilogramme par mètre cube (kg.m⁻³)

g: intensité de la pesanteur en newton par kilogramme (N.kg⁻¹)

z_A, z_B: altitudes en mètres (m)

Voici l'adresse d'une vidéo montrant l'importance de la pression atmosphérique https://youtu.be/SidD3EmCvwl

4. La presse hydraulique

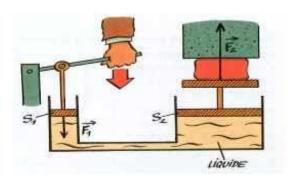


Figure 9

Sur la figure 9 on peut voir une presse hydraulique. Un piston 1 exerce une force pressante $\overrightarrow{F_1}$ sur le liquide incompressible dans le compartiment situé à gauche. La pression induite dans le liquide se <u>transmet intégralement</u> dans le compartiment situé à droite $(p_1 = p_2)$; Il en résulte une force pressante $\overrightarrow{F_2}$ au niveau du piston 2. Utilisons l'égalité des pressions pour trouver une relation entre les valeurs des forces et les surfaces :

$$p_1 = p_2$$

$$\frac{F_1}{S_1} = \frac{F_2}{S_2} \text{ donc}$$

$$F_2 = \frac{F_1 S_2}{S_1}$$

Sachant que $S_2 > S_1$ alors $F_2 > F_1$.

<u>Remarque</u>

Pour certains, il y a un côté mystérieux dans la presse de Pascal ; En effet ils imaginent que le travail fourni par la presse est supérieure au travail fourni par l'opérateur (main).

En réalité on peut prouver que les travaux sont identiques!

Travail = force \times distance

Ci-dessous un lien vers une vidéo traitant de la presse hydraulique de Pascal :

https://youtu.be/dfMIE1kkPA0

Application

Quelle est l'expression de la valeur f de la force que l'on doit exercer sur le piston du compartiment situé à gauche pour maintenir en équilibre la voiture située au-dessus du plateau à droite ? (Figure 10)

f : valeur de la force exercée par l'opérateur

s : surface du piston du compartiment de gauche

S: surface du piston du compartiment de droite

Mv: masse de la voiture

Mp : masse du plateau (comprenant la masse du piston) soutenant la voiture La masse du piston du compartiment gauche est négligée.

Figure 10

L'égalité des pressions en chaque point du liquide implique

$$\frac{f}{s} = \frac{F}{s}$$
 . (Relation 1)

La force pressante \vec{F} doit équilibrer le poids $\vec{P}\,$ du système {Plateau+voiture} donc

$$F = (Mp + Mv) g.$$
 (Relation 2)

En combinant les relations 1 et 2 on obtient

$$f = \frac{s (Mp + Mv)g}{S}$$

C. <u>Utilisation de l'informatique</u>

1. Utilisation d'un tableur

Pour vérifier la loi de Mariotte on dispose d'une seringue reliée à un capteur de pression. On rassemble les mesures dans le tableau suivant :

V(mL)	10	20	30	40	50	60
p (kPa)	610	303	205	153	124	102

Introduisons les unités du système international en physique :

V (m ³)	$1,0.10^{-5}$	$2,0.10^{-5}$	$3,0.10^{-5}$	$4,0.10^{-5}$	$5,0.10^{-5}$	$6,0.10^{-5}$
p (Pa)	$6,10.10^5$	$3,03.10^5$	$2,05.10^5$	$1,53.10^5$	$1,24.10^5$	$1,02.10^5$

Ci-dessous deux graphiques possibles (figures 11 et 12).

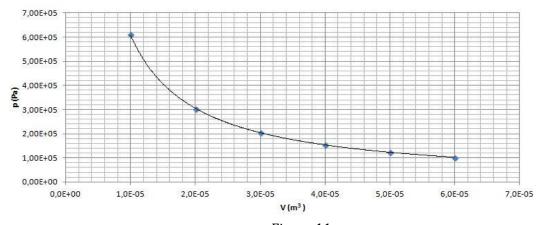


Figure 11

On trace p en fonction de V et on obtient une portion d'hyperbole ; La courbe est utilisable pour prévoir une grandeur (p ou V) connaissant l'autre (v ou p).

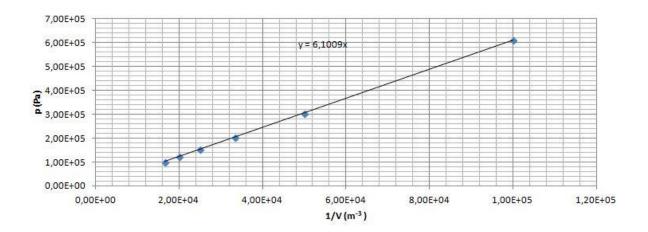


Figure 12

On trace p en fonction de 1/V et on obtient une portion de droite passant par l'origine; La droite est utilisable pour prévoir une grandeur (p ou V) connaissant l'autre (v ou p) grâce à l'équation donnée par le tableur

$$p = \frac{6,1}{V}$$
 en unités SI.

2. <u>Utilisation du langage Python</u>

On peut vérifier la loi de Mariotte en calculant le produit de p par V, soit p V. Ci-dessous un programme écrit en langage Python permettant la vérification.

```
import matplotlib.pyplot as plt
#Liste des volumes
V=[10*(i+1)*10**-6 for i in range(6)]
#Liste des inverses des volumes
inverseV=[1/V[i] for i in range(6)]

#Liste des pressions
p=[6.10*10**5,3.03*10**5,2.05*10**5,1.53*10**5,1.24*10**5,1.02*10**5]

#Liste des produits pression fois volume
pV=[p[i]*V[i] for i in range(6)]
#Moyenne des produits pression fois volume
pVmoyenne=sum(pV)/len(V)
print("Constante de la loi de Mariotte"+" ="+" ",pVmoyenne," "+"(SI)")
```

Constante de la loi de Mariotte = 6.125 (SI)

Pour les curieux : Comment faire entrer un œuf dans une bouteille ? Ci-dessous l'adresse d'une bonne vidéo sur le sujet https://youtu.be/5AAUbpOFd8w

Exercices

N°	10	page	218
N°	12	page	219
N°	14	page	219
N°	17	page	219
N°	18	page	219
N°	24	page	221
N°	25	page	221
N°	30	page	222
N°	31	page	223
N°	34	page	224